247 research outputs found

    Characterization of optical systems for the ALPS II experiment

    Get PDF
    ALPS II is a light shining through a wall style experiment that will use the principle of resonant enhancement to boost the conversion and reconversion probabilities of photons to relativistic WISPs. This will require the use of long baseline low-loss optical cavities. Very high power build up factors in the cavities must be achieved in order to reach the design sensitivity of ALPS II. This necessitates a number of different sophisticated optical and control systems to maintain the resonance and ensure maximal coupling between the laser and the cavity. In this paper we report on the results of the characterization of these optical systems with a 20 m cavity and discuss the results in the context of ALPS II

    The heterodyne sensing system for the ALPS II search for sub-eV weakly interacting particles

    Full text link
    ALPS II, the Any Light Particle Search, is a second-generation Light Shining through a Wall experiment that hunts for axion-like particles. The experiment is currently transitioning from the design and construction phase to the commissioning phase, with science runs expected to start in 2021. ALPS II plans to use two different sensing schemes to confirm the potential detection of axion-like particles or to verify an upper limit on their coupling strength to two photons of gaγγ2×1011GeV1g_{a\gamma\gamma}\leq2\times10^{-11}\text{GeV}^{-1}. This paper discusses a heterodyne sensing scheme (HET) which will be the first scheme deployed to detect the regenerated light. It presents critical details of the optical layout, the length and alignment sensing scheme, design features to minimize spurious signals from stray light, as well as several control and veto channels specific to HET which are needed to commission and operate the instrument and to calibrate the detector sensitivity.Comment: 12 pages, 5 figure

    Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd

    Get PDF
    Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
    corecore